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Abstract

Harsanyi invested his Aggregation Theorem and Impartial Observer Theorem

with deep utilitarian sense, but Sen redescribed them as "representation theorems"

with little ethical import. This negative view has gained wide acquiescence in eco-

nomics. Against it, we support the utilitarian interpretation by a novel argument

relative to the Aggregation Theorem. We suppose that a utilitarian observer evalu-

ates non-risky alternatives by the sum of individual utilities and investigate his von

Neumann-Morgenstern (VNM) preference on risky alternatives. Adding some tech-

nical assumptions to Harsanyi�s, we conclude that (i) this observer would use the

utility sum as a VNM utility function, and crucially, (ii) any social observer would

evaluate both risky and non-risky alternatives in terms of a weighted utility sum.

Hence, pace Sen, VNM theory can give some interesting support to utilitarianism.

The argument is conveyed by means of three theorems that encapsulate Harsanyi�s

original one as a particular step.
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1 Introduction

First acclaimed as pathbreaking contributions to social ethics, Harsanyi�s Impartial Ob-

server and Aggregation Theorems (1953, 1955) were later criticized by Sen (1977, 1986)

for being hardly relevant to the �eld. Using ethically loaded postulates, such as the so-

called Acceptance principle (in the �rst theorem) or the standard Pareto principle (in the

second theorem), along with a von Neumann-Morgenstern (VNM) apparatus of expected

utility for both the individuals and the social observer (in either theorem), Harsanyi shows

that the observer�s VNM utility function equals a weighted sum of individual VNM utility

functions, and then claims to have grounded utilitarianism in a new way. Not question-

ing the formal validity of the theorems, Sen objects against their interpretation. For him,

Harsanyi�s �rst theorem is "about utilitarianism in a rather limited sense", and his second

theorem, while more informative, remains "primarily a representation theorem" (1986, p.

1123-4). To summarize bluntly, he discards the �rst theorem and salvages only the math-

ematical achievement in the second; neither has to do with utilitarianism properly (see

also Sen, 1974 and 1977).

Sen�s critique has gained wide acquiescence among economists, especially after Wey-

mark (1991) ampli�ed it in a thorough discussion of the "Harsanyi-Sen debate". Those,

like Mongin and d�Aspremont (1998), who maintained that the critique can be addressed,

barely had a hearing, and today�s prevailing view seems to be that Harsanyi�s attempt at

deriving utilitarianism from VNM assumptions is simply hopeless.

Running against the tide, we o¤er a novel argument in favour of Harsanyi�s position.

We regard it as being severely incomplete, but not �awed, and undertake to buttress it,

somewhat paradoxically, by a further in�ux of "representation theorems". Those proved

below complement Harsanyi�s Aggregation Theorem and provide it, or so we claim, with

a utilitarian interpretation that it does not have by itself.
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Like Harsanyi, we suppose that the individuals�preferences satisfy the VNM axioms

on risky alternatives. Unlike him, we start from a social observer who has already formed

social preferences on sure alternatives according to the sum rule of classical utilitarianism,

and we suppose that his preferences can be extended to lotteries so as to satisfy the

VNM axioms. Under relevant technical assumptions from microeconomics, we obtain two

consequences in a row. First, if the extended preferences satisfy the Pareto principle, they

are represented as the expected utility of the classical utilitarian sum, i.e., this sum is also

the utilitarian observer�s VNM utility function (up to a positive a¢ ne transformation).

Second - a result holding this time for any social observer - preferences on lotteries that

are VNM and Paretian are represented as the expected utility of a weighted variant of

the utilitarian sum, i.e., the variant in question is also the social observer�s VNM utility

function (up to a positive a¢ ne transformation). Accordingly, it is also the social rule

employed to evaluate the sure alternatives.

The second statement conveys the �nal message: utilitarianism prevails inasmuch

as the social observer must add up the same cardinal individual utility functions as our

supposed utilitarian; however, it fails to the extent that the weights in the sum may not be

equal. This is not classical utilitarianism all the way down, but still a good deal of it (social

choice theorists, e.g., d�Aspremont and Gevers, 2002, call it weighted utilitarianism).

In sum, there is a sense in which Harsanyi was correct in believing that VNM theory

could help support utilitarianism. He did not carry the argument to its end, and Sen was

thus justi�ed in questioning it, but the challenge is not unanswerable despite the common

presumption.

In section 2, we develop Sen�s objections in some formal detail. We do not review

the whole controversy with Harsanyi, since part of it is self-explanatory or well covered

elsewhere. In particular, we do not discuss the normative plausibility of utilitarianism
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and its problematic stand towards income inequality, which have raised lively discussions

among both economists and philosophers. Instead, we concentrate on the single issue of

whether the Aggregation Theorem is at all relevant to utilitarianism. Section 3 sets up the

formal framework with its technical assumptions. They amount to replacing Harsanyi�s

abstract social states by allocations of commodities between the individuals, and then

imposing constraints on these more structured objects as well as their individual and

social evaluations. Section 4 states three theorems that derive utilitarianism from Paretian

aggregation; each follows from speci�c assumptions made on the allocations, preferences

and utilities. The appendix explains the mathematical tools.

2 Just "representations theorems"?

Sen objects as follows against the use of VNM utility functions for utilitarian purposes:

"The (VNM) values are of obvious importance for protecting individual or social choice

under uncertainty, but there is no obligation to talk about (VNM) values only whenever

one is talking about individual welfare" (1977, p. 277).

This is but an expression of doubt, but later Sen argues more strongly:

"(Harsanyi�s theorem) does not yield utilitarianism as such - only linearity... I feel sad that

Harsanyi should continue to believe that his contribution lay in providing an axiomatic

justi�cation of utilitarianism with real content." (1977, p. 300).

Here it is again with some detail (this comment was intended for the Impartial Ob-

server Theorem, but if it applies there, it also does here):

"This is a theorem about utilitarianism in a rather limited sense in that the VNM cardinal

scaling of utilities covers both (the social and individual utilities) within one integrated

system of numbering, and the individual utility numbers do not have independent meaning
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other than the value associated with each "prize", in predicting choices over lotteries.

There is no independent concept of individual utilities of which social welfare is shown to

be the sum, and as such the results asserts a good deal less than classical utilitarianism

does" (1986, p. 1123).

A major claim can be read between these lines: VNM theory provides a cardinaliza-

tion of utility, both individual and social, which is relevant to preference under uncertainty,

but prima facie useless for the evaluation of welfare, which is the utilitarian�s genuine con-

cern. Of course, the sum rule of classical utilitarianism presupposes that individual utility

functions are cardinally comparable, but there is no reason to conclude that these func-

tions belong to the class of cardinal functions that VNM theory makes available on a

completely separate axiomatic basis.

There is another claim in the passage, but it is more subdued. Weymark brings it

out clearly:

"No signi�cance should be attached to the linearity or non-linearity of the social wel-

fare function, as the curvature of this function depends solely on whether or not VNM

representations are used, and the use of such representations is arbitrary" (1991, p. 315).

That is to say, VNM theory deals with preferences taken in an ordinal sense, and it is

only for convenience that one usually represents them by means of an expected utility.

It is theoretically permissible to replace the individual�s VNM utility functions by any

non-a¢ ne increasing transform, and if one would do so, the social observer�s function

would not be linear anymore, but only additively separable, in terms of individual utility

numbers. That is, it would read as v = '(
P

i '
�1
i � vi), where v, vi are the chosen

increasing transforms of the social and individual VNM utility functions, respectively,

and ', 'i are the corresponding transformation mappings. This line of criticism also

leads to the conclusion that Harsanyi proved no more than representation theorems (see
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Weymark, 1991, p. 305).

Some de�nitions and notation, which anticipate on the framework of next section,

will help make the two objections formally. If & is a preference relation on a set S and

w a real-valued function on S, we say, as usual, that w represents % on S, or that V is a

utility function for % on S, i¤ for all x; y 2 S,

x % y () w(x) � w(y).

We are in particular concerned with preference relations on a lottery set L. There is an

underlying outcome set X, and by the familiar identi�cation of outcomes with sure lotter-

ies, X � L. If a preference % on L satis�es the VNM axioms, the VNM representation

theorem guarantees that there exists a utility function u for % on X with the property

that the expectation Eu is a utility function for % on L. Both u and Eu will be called

VNM utility functions, a standard practice.

The VNM representation theorem also teaches that the set of those u0 for which Eu0

is a utility function for % on L is exactly the set of positive a¢ ne transforms (PAT) of

the given u, i.e., the set of all �u+ � with � > 0 and � 2 R. Clearly,

U = f' � u j ' positive a¢ ne transformationg  F = f' � u j ' increasingg .

By the same token, the set of utility functions for % on L that take the form Eu0 is

U 0= f' � Eu j ' positive a¢ ne transformationg  F 0 = f' � Eu j ' increasingg .

In all existing versions (see Fishburn�s 1982 review), the VNM axioms de�ne an ordinal

preference concept, and thus do not by themselves justify selecting a representation in U 0

rather than F 0. This is the point well emphasized by Weymark.

We are also concerned with the social rule of a utilitarian observer, and we de�ne it

as follows. In the observer�s eyes, the individuals i = 1; :::; n are associated with welfare
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indexes u�i on the outcome set X that meaningfully add up, i.e., the u�i must be both

cardinally measurable and comparable. Accordingly, this social rule may be any element

of the set:

C =
(

nX
i=1

'i � u�i j 'i positive a¢ ne transformation (same �)
)
.

(For a related treatment of utilitarianism in social choice theory, see d�Aspremont and

Gevers, 2002.)

With the de�nitions just made, it is impossible to conclude that u�i 2 Ui, the set of

i�s VNM representations on X, or that
P

i ui 2 C when (u1; :::; un) is a vector of such

representations. This is the most transparent claim in Sen�s above quotations: VNM

utility values do not have to measure welfare, and if Harsanyi proves that the social

utility function is a sum of individual VNM utility values, this does not by itself speak in

favour of utilitarianism. The gap remains even if one makes the reasonable assumption

that u�i is a utility function for %i on X, for this does not deliver cardinal equivalence

with ui; that is, one gets u�i 2 Fi, the set of i�s representations on X at large, and not

u�i 2 Ui, as utilitarianism would require; and similarly, the assumption does not makeP
i ui a member of the set C.

To take stock, two problems stand in the way of Harsanyi�s utilitarian interpretation

of his results. One - call it Sen�s point - is that VNM theory has a cardinalization of its

own; the other - call it Weymark�s point - is that this cardinalization is arti�cial given the

ordinal nature of that theory. There is a convenient joint answer, which is to ground the

utility functions ui and u�i on a common basis of cardinal preference. If the utilitarian

cardinalization rests on a preference basis and the VNM cardinalization can be reduced to

that basis, the two coincide (pace Sen) and the former escape irrelevance (pace Weymark).

Technically, a cardinal preference is a relation on pairs of sure alternatives, i.e., (x; y)

%�i (z; w), and the axioms for %� embody the utilitarian tenet that coherent comparisons
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can be made of intraindividual preference di¤erences. There will be a connecting axiom

to ensure that the VNM cardinalization is rooted in the same comparisons. It will entail

the consequence that for all x; y; w; z 2 X,

(1=2)u(x) + (1=2)u(y) � (1=2)u(z) + (1=2)u(w) i¤

u�(x)� u�(z) � u�(w)� u�(y). ((�))

Mongin (2002) develops this strategy, which was already suggested, but without

axiomatic detail, in Weymark (1991, p. 308) and Mongin and d�Aspremont (1998, p. 435).

It is helpful in making Harsanyi�s position logically consistent, but it is question-begging,

because the axioms are only a roundabout way of getting the problematic equivalence

(�). Moreover, for most economists, preference is an ordinal concept by de�nition, and it

may even be so for Harsanyi himself. In this paper, we dispense with (�) or its axiomatic

counterpart in terms of cardinal preference, and we use an indirect argument instead. It

will be seen that it takes care of the two critical points at the same time.

3 The framework and assumptions

We assume that there is a feasible set X, the elements of which are allocations of com-

modities to the n � 2 individuals. As a typical application, X � Rmn, where m is the

number of commodities. Unlike basic consumer theory, which takes X = Rmn+ , we do not

require X to be a Cartesian product, and indeed, this structure becomes ill-suited when

the list of commodities includes public goods or services exchanged between individuals,

so that individual consumptions exhibit technical dependencies. Even in the standard

case of private goods, it may be an inappropriate structure if X takes the availability of

resources into account. We require connectedness, a weakening of the convexity assump-

tion that the basic theory often makes. We can a¤ord to be general in another direction
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by allowing X to be a subset of a function space, and not simply of the Euclidean space.

All that matters is the following domain assumption.

Assumption 1: X is a metric connected space.

The VNM apparatus can now be introduced formally. When we apply it to the social

observer, all standard construals of VNM theory in expectational form work; take any one

of the axiomatizations in Fishburn (1982). However, concerning the individuals, we need

continuous VNM utility functions, a property which the usual systems do not provide, so

we turn to Grandmont�s (1972) version, which is set up for that purpose.

De�ne B(X) to be the set of Borelian sets of X, i.e., the �-algebra generated by the

open sets, and take the set �(X) of all probability measures on the measurable space

(X;B(X)). By a standard assumption, this set is endowed with the topology of weak

convergence, which makes it a metric space in its own right. Now, a continuous VNM

preference relation % on �(X) is by de�nition an ordering that satis�es two conditions

(as usual, we write p � q and p � q for the symmetric and asymmetric parts of %):

(Continuity) For all p 2 �(X), the sets

fp0 2 �(X) : p0 % pg and fp0 2 �(X) : p % p0g

are closed in �(X).

(Independence) For all p; q; r 2 �(X) and all � 2 [0; 1], p �i q i¤ �p + (1 � �)r �i

�q + (1� �)r.

Grandmont�s Theorem 3 (1972, p. 49) ensures that there is a continuous and bounded

utility function u(x) for % on X such that the expectation v(p) = Eu(p) is a utility

function for % on �(X). It is also the case that v is continuous, and that the set of u0

such that % is represented by Eu0 is exactly the set of PAT of u.

We retain Grandmont�s de�nition of the lottery set, letting L = �(X); and apply his

preference apparatus to the individuals.
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Assumption 2: Each i = 1; :::; n is endowed with a continuous VNM preference

relation %i on L.

By contrast, the utilitarian half of the construction relies on primitives directly ex-

pressed in terms of utility functions. We �x a vector of functions on X, U� = (u�1; :::; u
�
n),

to represent the cardinally measurable and comparable utility functions that a utilitarian

social observer would associate with the individuals, and accordingly, we formally de�ne

the classical utilitarian social preference ordering %� on X by

x %� y i¤
nX
i=1

u�i (x) �
nX
i=1

u�i (y).

We need technical conditions on U�.

Assumption 3: For each i = 1; :::; n, u�i is continuous on X.

Assumption 4: The image set U�(X) has nonempty connected interior U�(X)� in

Rn and is such that U�(X) � U�(X)�, i.e., is included in the closure of its interior.

It would be equivalent to impose these assumptions on any collection of PAT 'i � u�i

(with the same � for all i), so that they make good utilitarian sense. Assumption 3 is

mild and standard, but Assumption 4 is less so. In one respect, it simply complements

Assumptions 1 and 3, which entail that U�(X) is connected, by excluding unusual ways in

which connectedness applies to this set. In another respect, it requires U�(X) to have full

dimension n, hence u�1; :::; u
�
n to be linearly independent functions. This is not demanding

under standard microeconomic conditions. If there are private consumption goods, each

individual is concerned only with how much of these goods he consumes, and free disposal

is allowed, then throwing away some of the individual�s allocation will change his utility

without a¤ecting the others�. However, if there are only pure public goods, Assumption 4

requires su¢ cient diversity of individual preferences (for instance, no two individuals can

be alike in the utilitarian observer�s eyes).

In a variant of our analysis, we shift the dimensionality requirement from the util-
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itarian to the VNM side. This variant requires the continuity of Eu�i instead of u
�
i and

dispenses with connectedness assumptions. Accordingly, 1, 3 and 4 are modi�ed thus.

Assumption 1�: X is a metric space.

Assumption 3�: For each i = 1; :::; n, Eu�i is continuous on L.

Assumption 4�: For each i = 1; :::; n, there are pi; qi 2 L such that pi �i qi and

pi �j qi, j 6= i.

The last property is sometimes called Independent Prospects (IP) in the literature,

and it is provably equivalent to the following: for any vector V = (v1; :::; vn) of VNM

utility functions for %1; :::;%n on L, the vi are a¢ nely independent. (That IP entails

linear, hence a¢ ne independence, is obvious and not limited to VNM functions; however,

the converse is non-trivial and speci�c to such functions.)

Finally, we relate the utilitarian and VNM halves of the construction to each other.

Assumption 5: For each i = 1; :::; n, u�i is a utility function for %i on X.

Crucially, this imposes no more than ordinal equivalence on u�i and ui, whereas cardinal

equivalence may not hold between them; if we assumed the latter right away, we would in

essence fall back on the equivalence (�) of last section and the strategy that was criticized

as being question-begging.

That u�i and ui are ordinally equivalent means that ui = fi � u�i for some increasing

function fi on u�i (X). Actually, more can be said on fi in view of the previous assumptions.

Lemma 1 Suppose that g and h are continuous real-valued functions de�ned on a path-

connected set X and f is a real-valued function de�ned on g(X) such that h = f �g; then,

f is also continuous. It follows from Assumptions 1�3 that fi is continuous for i = 1; :::; n:

To complete the mathematical groundwork for the next section, we state a functional

equation theorem that drives its mathematical analysis. Rado and Baker (1987) proved

it for k = 2, but it generalizes to k � 2. Blackorby, Donaldson and Weymark (1999)
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assumed this more general form to derive Harsanyi�s Aggregation Theorem on a domain

of state-contingent alternatives.

Take Z and E to be normed vector spaces, and T to be an open connected subset of

Zk, k � 2. For any set S � Z, we put S+ =
(

kX
i=1

zi j (z1; :::; zk) 2 S
)
and Si = projiS,

i.e., the projection of S on the i-th factor of Zk.

Lemma 2 Suppose that f : T+ ! E and fi : Ti ! E, i = 1; :::; k satisfy the equation

f(
kX
i=1

zi) =
kX
i=1

fi(zi)

for all (z1; :::; zk) 2 T . Suppose that one of the f , fi is continuous. Then, there exist a

linear function A : Z ! E and scalars b1,...,bk such that the functions on Z de�ned by

F (z) = A(z) +
kX
i=1

bi,

Fi(z) = A(z) + bi; i = 1; :::; k;

extend f and fi, i = 1; :::; k, respectively, and such that

F (
kX
i=1

zi) =
kX
i=1

Fi(zi)

holds for all (z1; :::; zk) 2 Zk. There are no other functions than F and the Fi just de�ned

that extend f and the fi while satisfying this equation.

4 Theorems on utilitarianism from Paretian aggre-

gation

The Aggregation Theorem was �rst stated by Harsanyi (1955, 1977) and rigorously proved

and developed by later authors. The lottery set L and the VNM axioms in its statement

can be taken in all the ways covered by Fishburn (1982). The theorem relies on a Pareto
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condition that can also be formulated variously, and this needs spelling out. Given indi-

vidual preference relations %i, i = 1; :::; n, and a social preference relation %, all being

de�ned on L, let us say that Pareto indi¤erence holds if, for all p; q 2 L,

p �i q; i = 1; :::; n) p � q,

and that Strong Pareto holds if, in addition to Pareto indi¤erence, for all p; q 2 L,

p %i q; i = 1; :::; n & 9i : p �i q ) p � q.

The Aggregation Theorem is often stated in terms of Pareto indi¤erence alone, but we

adopt here a more assertive form based on Strong Pareto. Along with further Paretian

variants, it is proved in Weymark (1993) and De Meyer and Mongin (1995).

Lemma 3 (The Aggregation Theorem) Suppose that there are individual preference

relations %1; :::;%n and a social preference relation % satisfying the VNM axioms on a

lottery set L, and suppose also that Pareto indi¤erence holds. Then, for every choice of

VNM utility functions v; v1; :::; vn for %;%1; :::;%n on L, there are real numbers a1; :::; an

and b such that

v =
nP
i=1

aivi + b:

If Strong Pareto holds, there exist ai > 0, i = 1; :::; n. The ai and b are unique if and only

if the v1; :::; vn are a¢ nely independent.

Now to our results. In each of them, we suppose that the utilitarian social preference

%� on X can be extended to a VNM preference %�ext on L, which calls for a technical

comment. By de�nition, for all x; y 2 X,

x %�ext y i¤
X

i
u�i (x) �

X
i
u�i (y).

Clearly, the following preference %�� satis�es the requisites: for all p; q 2 L,

p %�� q i¤ Ep
X

i
u�i (x) � Eq

X
i
u�i (y).
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But clearly also, there are other VNM extensions %�ext of %� to L. They involve cardinal-

izations di¤erent from the utilitarian one � another occurrence of Sen�s point in section

2. The force of our theorem is precisely to exclude these other extensions, using Paretian

assumptions as further constraints on %�ext. Once uniqueness of %�ext is secured, much

more follows, in particular a strong claim concerning any arbitrary social observer.

Theorem 1 Let assumptions 1�5 hold. Consider an extension %�ext to L of the utilitar-

ian %� on X that satis�es the VNM axioms, and suppose that Pareto indi¤erence holds

between %�ext and the %i. Then, the set of VNM utility functions for %�ext on X is the set

of PAT of
Pn

i=1 u
�
i . Furthermore, for any preference relation % on L satisfying the VNM

axioms, if Pareto indi¤erence holds between % and the %i, there are unique constants ai;

i = 1; :::; n, such that the set of VNM utility functions for % on X is the set of PAT ofP
i aiu

�
i . If % satis�es the Strong Pareto condition, the ai are positive.

Proof. Let Eui and Eu be VNM utility functions for %i and %�ext, respectively, on the

lottery set on L. By Lemma 3 applied to these functions, there are constants bi, i = 1; :::; n

and d s.t.

Eu =
nX
i=1

biEui + d.

There are increasing functions fi on u�i (X) and f on
Pn

i=1 u
�
i (X) s.t. ui = fi � u�i and

u = f �
Pn

i=1 u
�
i , and when restricted to X, the equation becomes:

f �
nX
i=1

u�i =
nX
i=1

bifi � u�i + d.

The increasing property of f makes u increasing in each u�i , and therefore in each ui,

as f�1i is increasing, which leads to bi > 0, i = 1; :::; n. Also, by Lemma 1, each fi is

continuous, and so is f because u =
P

i=1 biui + d and
Pn

i=1 u
�
i are continuous functions.

De�ning f 0i = bifi+di for arbitrary choices of di s.t.
Pn

i=1 di = d, we rewrite the equation
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as

f �
 

nX
i=1

u�i

!
=

nX
i=1

f 0i � u�i ,

or

f

 
nX
i=1

zi

!
=

nX
i=1

f 0i(zi),

for all (z1; :::; zn) 2 U�(X) � Rn.

Consider the subset T = U�(X)
�
. It is a nonempty, open connected subset of Rn,

and one of the f; f 0i is continuous (all are), so we can apply Lemma 2 to the functional

equation by restricting it to T . It follows that there exist constants A > 0 and c1,...,cn

s.t.

(1) 8z 2 T+, f(z) = Az +
nX
i=1

ci;

(2) 8z 2 Ti, f 0i(z) = Az + ci, i = 1; :::; n,

where T+, Ti are de�ned like S+, Si before Lemma 2.

A stronger result actually holds:

(10) 8z 2 [U�(X)]+ ; f(z) = Az +
nX
i=1

ci;

(20) 8z 2 [U�(X)]i ; f
0
i(z) = Az + ci, i = 1; :::; n:

To prove (10) from (1), take z 2 [U�(X)]+. There is (z1; :::; zn) 2 U�(X) s.t. z =Pn
i=1 zi. As (z1; :::; zn) 2 T by assumption, there is in T a sequence (zl1; :::; zln), l 2 N,

s.t.(z1; :::; zn) = liml!1(z
l
1; :::; z

l
n) and z = liml!1

Pn
i=1 z

l
i: Now, since f is continuous on

[U�(X)]+,

f(z) = lim
l!1

f(
nX
i=1

zli) = lim
l!1

A
nX
i=1

zli +
nX
i=1

ci = Az +
nX
i=1

ci,

which establishes (10). The proof of (20) from (2) is similar.
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Equation (10) and the initial de�nition of f entail that, for all x 2 X,

u(x) = A
nX
i=1

u�i (x) +

nX
i=1

ci,

i.e., u is a PAT of
P

i u
�
i . Similarly, for i = 1; :::; n, equations (2

0) and the de�nitions of

f 0i and fi entail that for all x 2 X,

biui(x) + di = Au
�
i (x) + ci,

hence, given bi > 0, that ui is a PAT of u�i . It follows that the sets of VNM utility functions

for %�ext and %i on X are the sets of PAT of
Pn

i=1 u
�
i and u

�
i , respectively.

Now, take % as speci�ed and �x a VNM utility function Eu0 for % on L. Lemma

3 can be applied to Eu0, and for each i, some choice of VNM utility function for %i on

L. But the last paragraph has shown that this utility function must be a PAT of Eu�i . It

follows that there are real numbers ai; i = 1; :::; n, and b s.t.

Eu0 =
nP
i=1

aiEu
�
i + b,

hence s.t.

u0 =
nP
i=1

aiu
�
i + b

is a VNM utility function for % on X. Thus, the set of VNM utility functions for % on X

is the set of PAT of
Pn

i=1 aiu
�
i . The ai are unique because the u

�
i are a¢ nely independent

by assumption. If % satis�es the Strong Pareto condition, Lemma 3 entails that the ai

are positive.

We now provide a variant of the previous result that shifts the dimensionality require-

ment from the utilitarian vector U� = (u�1; :::; u
�
n) to the vector of VNM representations

V = (v1; :::; vn) of %1; :::;%n . This is perhaps not so intuitive, but the technical advan-

tage is that the connectedness assumptions can be dropped. The role played earlier by

the connected sets X and U�(X)
�
is now ful�lled by the convex sets L and V (L).
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Theorem 2 Assumptions 1�,2,3�,4�,5 hold. Then, the conclusions of the previous theorem

follow.

Proof. Let vi and v be VNM utility functions for %i and %�ext on L. By Lemma 3, these

satisfy

v =

nX
i=1

bivi + d,

where bi > 0 for all i. There are increasing functions fi on (Eu�i ) (L), and f on

(E
Pn

i=1 u
�
i )(L) = (

Pn
i=1Eu

�
i ) (L), s.t. vi = fi � Eu�i and v = f �

Pn
i=1Eu

�
i . Putting

wi = bivi + di, i = 1; :::; n

for arbitrary di s.t. d =
Pn

i=1 di, we rewrite the equation as:

nX
i=1

f�1i � wi � di
bi

= f�1 �
nX
i=1

wi.

or
nX
i=1

gi � wi = f�1 �
nX
i=1

wi

after suitably relabelling the functions on the LHS. Now, L is a convex, hence connected

set, and the weak topology ensures that it is path-connected. The functions wi and
Pn

i=1wi

are continuous on L, as are the composed functions gi � wi = Eu�i and f�1 �
Pn

i=1wi =X
i
Eu�i ; hence, by Lemma 1, f

�1 and the gi are continuous on their respective domains.

The last equation can be restated as

nX
i=1

gi(zi) = f
�1(

nX
i=1

zi),

for all (z1; :::; zn) 2 V (L) � Rn. As V (L) = (v1(L); :::; vn(L)) is a convex subset of full

dimension, it has non-empty interior T = V (X)
�
in Rn. Furthermore, T is itself convex,

hence connected in Rn, so Lemma 2 can be applied to the functional equation as restricted

to T .
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The proof now parallels the previous one. It entails that v is a PAT of E
P

i u
�
i , that,

for i = 1; :::; n, vi is a PAT of Eu�i , and that there are ai; i = 1; :::; n and b s.t. % is

represented by
nP
i=1

aiEu
�
i + b,

on L, hence by
nP
i=1

aiu
�
i + b,

on X. These facts entail the two claims on the sets of VNM functions made by the

theorem.

Since the vi are a¢ nely independent by assumption, the Eu�i also are, and the coef-

�cients ai are unique in the representation of % on L. Given the linearity of E, they are

also unique in the representation of R on X.

As a last variant, we dispense with the assumption that either U�(X) or V (L) is

full-dimensional, but require that these two utility sets have the same a¢ ne dimension

and realize their common dimension on the same subset of individuals. Formally, there is

fj1; :::; jkg � f1; :::; ng such that

dim
�
u�j1 ; :::; u

�
jk

	
= dimU� = dim fvj1 ; :::; vjkg = dimV .

For k � 2, we call the set fj1; :::; jkg a common basis for U� and V . Clearly, this algebraic

assumption is neither weaker nor stronger than the preceding ones. It can be made part

of either the �rst or the second set of assumptions. Speci�cally, take the �rst one, and

replace Assumption 4 by:

Assumption 4�. The image set U�(X) has nonempty connected relative interior

U�(X)
�
and is such that U�(X) � U�(X)�. Furthermore, there is a common basis B for

U� and V , where V is any vector of individual VNM representations on L.

Theorem 3 Assumptions 1,2,3,4�,5 hold. Then, the conclusions of the initial theorem
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follow, except that the coe¢ cient ai may not be unique and even under Strong Pareto may

be of any sign.

Proof. Assume w.l.g. that the common basis B consists of the �rst k individuals. Since

the Pareto indi¤erence condition can be restated in terms of the individuals in B, Lemma

3 leads to

Eu =

kX
i=1

biEui + d.

Utility functions of individuals outside B can be reexpressed as

u�j =
kX
i=1

�jiu
�
i + �j; j = k + 1; :::; n,

and the equation in the proof of the initial theorem becomes

f �
 

kX
i=1

 
1 +

nX
j=k+1

�ji

!
u�i +

nX
j=k+1

�j

!
=

kX
i=1

b�i fi � u�i + c�,

or

f �
 

kX
i=1

eu�i
!
=

kX
i=1

efi � eu�i ,
for suitably de�ned functions eu�i ,efi.

This leads to a functional equation on eT = ( eu�i (X))i=1;:::;k that can be solved like the
equation on T = (u�i (X))i=1;:::;n in the �rst proof. (eT �

can be viewed as a full-dimensional

subset of Rk satisfying the conditions of Lemma 2, and the a¢ ne solution on eT �
can be

extended by continuity to eT .) It follows that u is a PAT of Pk
i=1
eu�i = Pn

i=1 u
�
i , which

establishes the claim on the set of VNM utility functions for %�ext on X. It also follows

that, for i = 1; :::; k, ui is a PAT of u�i .

We may now apply Lemma 3 to % and �i, i = 1; :::; k, and conclude that there are

coe¢ cients a0i; i = 1; :::; k s.t.

u0 =
kP
i=1

a0iu
�
i
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is a VNM utility function for % on X. This can be rewritten as

u0 =
nP
i=1

aiu
�
i

for appropriate coe¢ cients that will not be unique if k < n. This establishes the claim

on the set of VNM utility functions for %. To show that even with Strong Pareto ai may

be nonpositive, take n = 3 and B = f1; 2g with

u1 = u
�
1; u2 = u

�
2; u3 = u1 + u2 and u

�
3 = 2u

�
1 + 2u

�
2,

with u�1 and u
�
2 being unrestricted. De�ne % on L from the representation E(u1+u2+u3).

By construction, % satis�es Strong Pareto and has a VNMutility function u0 = 2u�1+2u�2 =

u�3 on X. Now, if we put u
0 = a1u

�
1 + a2u

�
2 + a3u

�
3, we see that the coe¢ cients ai can be

chosen to be negative, e.g.,

u0 = 4u�1 + 4u
�
2 � u�3 = �u�1 � u�2 + 1:5u�3 :

5 Conclusion

The three theorems of the paper di¤er only by the technical assumptions they make, and

their ethical import lies with the conclusion, obtained each time, that a social observer

whose preferences on lotteries meet the conditions of the Aggregation Theoremmust follow

a weighted sum rule
P

i aiu
�
i . That the coe¢ cients may be unequal or (in the last theorem)

nonpositive is a weakness from the perspective of classical utilitarians like Bentham.

However, weighted utilitarianism has some theoretical standing, and the measurement

stage is anyhow the decisive one on the road to Benthamism. What matters most are the

u�i appearing in the formula.
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By introducing a utilitarian observer at the outset, we make a salient addition to

Harsanyi, in a way that is fully consistent with Sen�s point that utilitarianism has to

be de�ned independently within the Harsanyi framework, or else the results will bear

no connection with this doctrine. The exogenously given u�i provide the desired basis of

cardinal utility measurement. Thus, we take for granted that nonrisky alternatives are

evaluated in the cardinal utilitarian way, the point of the theorems being to disseminate

this evaluation to lotteries. Eventually, there will be a unique cardinalization for both

items, which Harsanyi claimed without adducing any reason. If one accepts our conceptual

addition of the utilitarian observer � as well as, of course, the added technical restrictions

� Sen�s point appears to be fully answered.

Perhaps less obviously, Weymark�s point is also answered. Our assumptions about

individual utility functions ui take them to be representations of ordinal VNM preferences,

but the theorems invest them with a cardinal meaning, which is furthermore utilitarian in

the sense just said. Brie�y put, non-a¢ ne 'i drop out from the social observer�s criterionP
i '

�1
i �u�i . As the proof goes, this follows because the utilitarian observer has evaluated

lotteries by E
P

i u
�
i , not by some more general E

P
i 'i � u�i , which in turn follows be-

cause the two conditions of the Aggregation Theorem have been applied to a utilitarian

preference over lotteries that extends the utilitarian preference over sure outcomes.

From this summary, there remain only two ways of opposing the conclusion that

the theorem confers ethical relevance to utilitarianism. One is to deny that a utilitarian

preference over lotteries necessarily satis�es the stated conditions - the VNM one being

more problematic than the Pareto principle. Not to mention Harsanyi himself, those

economists, like Hammond (1996) and Mongin and d�Aspremont (1998), who updated

Bentham�s doctrine, do endorse the conditions. While we are not aware of utilitarian

theories that would violate them, such theories can be conceived of. The other move is of
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course to deny that the conditions are appealing in and of themselves. It has been argued

that the VNM conditions are questionable for a social observer (e.g., Diamond, 1967), and

that the Pareto principle is not compelling in a lottery context (e.g., Fleurbaey 2010). All

these objections are in some sense secondary to the pivotal claim that the Aggregation

Theorem has nothing to do with utilitarianism as an ethical doctrine. The aim of this

paper was to debunk this claim.
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7 Appendix

Proof. (Lemma 1) Let (gn) be a sequence in g(X) s.t. gn ! g0 2 g(X) as n ! 1.

We prove by reductio that f (gn) ! f(g0) as n ! 1. Suppose not; one can then �nd

" > 0 and a subsequence (gm) s.t. jf (gm)� f (g0)j > " for all m. In this subsequence,

we select a weakly monotonic subsequence (gp) s.t. gp ! g0 as p ! 1; necessarily,

g0 6= gp for all p. Take x0; x1 2 X satisfying g(x0) = g0 and g(x1) = g1. The set X

is path-connected, so there is a continuous function t : [0; 1] ! X s.t. t(0) = x0 and

t(1) = x1. By continuity of g � t and the properties of (gp), the set g � t ([0; 1]) is a compact

nondegenerate interval having endpoints g � t(1) and g � t(0), and this interval contains

every gp. The intermediate value theorem for g � t ensures that, for every p � 1, there is

ap 2 [0; 1] s.t. g (t (ap)) = gp. Let xp = t(ap) for all p. The sequence so constructed is

contained in the compact set t([0; 1]) � X, so it has a subsequence (xq) converging to some

x� 2 X, and by continuity of g, g(xq) ! g(x�) as q ! 1. But (g(xq)) is a subsequence

of (gp), which has been said to converge to g0, whence g(x�) = g0: By continuity of h,

h (xq) = f ((g(xq)) ! h (x�) = f (g0) as q ! 1. This is a contradiction, because no

subsequence of (f (gm)) can converge to f (g0).

Note: Lemma 1 also holds under the assumption that X is a compact metric set,

and this is shown by a related mathematical argument.
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Proof. (Lemma 2) A proof for k � 2 from Rado and Baker�s (1987) statement for k = 2

is available on request.

Note: A signi�cant advantage of Lemma 2 is that it does not impose a Cartesian

product domain on the functions f and fi; nor does it impose more than a mild continuity

restriction. Compare with the less general results surveyed in Eichhorn (1978).
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